Distinguishing between photothermal and non-thermal contributions is essential in plasmon catalysis. Use of a tailored optical temperature sensor based on fiber Bragg gratings enabled us to obtain an accurate temperature map of an illuminated plasmonic catalyst bed with high spatiotemporal resolution.Its importance for quantification of the photothermal and non-thermal contributions

Solar energy driven processes with H2O and CO2 as basic feedstocks can produce “solar fuels” that could substitute their fossil based counterparts. This article summarizes the main findings of a techno-economic analysis of systems that can generate different types of fuels with renewable energy as starting point. These “renewable fuels”

Plasmon catalysis is an interesting technology concept for powering chemical processes with light. Here, we report the use of various Al2O3-supported Ru spheroidal nanoparticles as catalyst for the low-temperature conversion of CO2 and H2 to CH4 (Sabatier reaction), using sunlight as energy source. At high loadings of Ru spheroidal nanoparticles

The interaction between plasmonic metal catalysts and visible light can be exploited to increase their catalytic activity. This activity increase results from the generation of hot charge carriers or hot surfaces, or a combination of both. We have studied the light-induced Suzuki-Miyaura cross-coupling reaction of bromobenzene and m-tolylboronic acid using

Methane, which has a high energy storage density and is safely stored and transported in our existing infrastructure, can be produced through conversion of the undesired energy carrier H2 with CO2. Methane production with standard transition-metal catalysts requires high-temperature activation (300–500 °C). Alternatively, semiconductor metal oxide photocatalysts can be used,